Weighted-W^{1,p} estimates for weak solutions of degenerate and singular elliptic equations
نویسندگان
چکیده
منابع مشابه
Degenerate elliptic equations with singular nonlinearities
The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to...
متن کاملWeighted Sobolev Spaces and Degenerate Elliptic Equations
In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...
متن کاملSingular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملAnd Pointwise Estimates for a Class of Degenerate Elliptic Equations
In this paper we prove a Sobolev-Poincaré inequality for a class of function spaces associated with some degenerate elliptic equations. These estimates provide us with the basic tool to prove an invariant Harnack inequality for weak positive solutions. In addition, Holder regularity of the weak solutions follows in a standard way. 1 Let Sf = YJl ,=i 9j(ajjdj) be a second-order degenerate ellipt...
متن کاملDiscontinuous Solutions of Linear, Degenerate Elliptic Equations
We give examples of discontinuous solutions of linear, degenerate elliptic equations with divergence structure. These solve positively conjectures of De Giorgi.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2018
ISSN: 0022-2518
DOI: 10.1512/iumj.2018.67.7533